Enrollment No: Exam Seat No: **C.U.SHAH UNIVERSITY** Wadhwan City Subject Code : 5SC01MTC4 Summer Examination-2014 Date: 19/06/2014 Subject Name Topology-I Branch/Semester:- M.Sc(Maths)/I Time:10:30 To 1:30 **Examination : Remedial** Instructions:-(1) Attempt all Questions of both sections in same answer book / Supplementary (2) Use of Programmable calculator & any other electronic instrument is prohibited. (3) Instructions written on main answer Book are strictly to be obeyed. (4) Draw neat diagrams & figures (If necessary) at right places (5) Assume suitable & Perfect data if needed **SECTION-I** a) Which of the following are open in standard topology? Q-1 (02)(i) (a, b) (ii) (a, b] (iii) [a, b) (iv) [a, b]b) Let $X = \{a, b, c, d\}$. Check which of the following are topologies on X? (02) $\tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c, d\}\}$ (i) $\tau_2 = \{X, \{a\}, \{a, b\}\}$ (ii) c) Which topology is stronger, standard topology on R or lower limit topology (01)on R? d) Define topology. (01)e) Define open basis for a topological space (01)

Q-2 a) Define co-countable topology on *R*. Show that it is a topology on *R*. (05) b) Let β be a basis for a topology on *X*. Define $\tau = \{U \subset X : \forall x \in U, there exists B \in \beta \text{ such that } x \in B \subset U \}.$

Then Show that τ is a topology on X.

a

c) Let X be a non-empty set. For $x, y \in X$ define (1) if $x \neq y$

$$l(x,y) = \begin{cases} 1 & i \ x \neq y \\ 0 & i \ x = y \end{cases}$$

Show that (X, d) is a metric space.

OR

- Q-2 a) Let (X, d) be metric space. For $x, y \in X$, define $d'(x, y) = \frac{d(x,y)}{1+d(x,y)}$. Show (05) that d' is a metric on X.
 - b) Define $\tau = \begin{cases} U \subset R: \text{ for every } x \in U \text{ there exists an open interval} \\ (a, b) \text{ such that } x \in (a, b) \subset U \end{cases}$. Is this a topology on *R*? Justify your answer. (05)
 - c) Let X be a topological space and $A \subset X$. Suppose that for each $x \in A$ there (04) is an open set U in X such that $x \in U \subset A$. Show that A is open in X.
- Q-3 a) Let $(X_1, \tau_1), (X_2, \tau_2), ..., (X_m, \tau_m)$ be topological spaces. Let $X = X_1 \times X_2 \times (05)$... $\times X_m = \prod_{i=1}^m X_i$, and $\beta = \{\prod_{i=1}^m U_i : U_i \in \tau_i, i = 1, 2, ..., m.\}$. Show that β is a basis for some topology on X.
 - b) Let Y be a subspace of X. Prove that a set A is closed in Y if and only if $A = B \cap Y$ for some closed set B in Y. (05)

(04)

c)	Let <i>X</i> be a topological space and $A \subset X$. Prove that $\overline{A} = A \cup A'$.	(04)
----	---	------

OR

- Q-3 a) Let X and Y be topological spaces and $f: X \to Y$ be a function show that the (05) following are equivalent.
 - (i) f is continuous.
 - (ii) f is continuous at each point of X.
 - b) Let X be a topological space and $A \subset X$. Prove that $Bd(A) = \overline{A} A^{\circ}$. (05)
 - c) Is $\overline{A \cap B} = \overline{A} \cap \overline{B}$ in any topological space ? Justify your answer. (04)

SECTION-II

Q-4	a)	Define homeomorphism.	(01)
	b)	Is discrete topological space a T_1 space ?	(01)
	c)	Is lower limit topological space a T_2 space ?	(01)
	d)	Define locally compact space.	(01)
	e)	State Tietze Extension Theorem.	(02)
	f)	Define locally connected space.	(01)
Q-5	a)	Let X be a topological space and $A \subset X$. Let (x_n) be a sequence in A such that $x_n \to x$, then prove that $x \in \overline{A}$.	(07)
	b)	Let X be a topological space. Prove that X is a T_2 space if and only if $\{x\} = \cap \{\overline{U}: U \text{ is a neighbourhood of } x, \forall x \in X\}$. OR	(07)
Q-5	a)	Prove that continuous image of a compact space is compact.	(07)
	b)	Prove that every closed and bounded interval in R is compact.	(07)
Q-6	a)	Prove that every metric space has its completion.	(07)
	b)	Prove that every compact T_2 space (Hausdorff space) is T_3 sapce (regular).	(07)
		OR	
Q-6	a)	State and prove Urysohn's lemma.	(10)
	b)	Prove that the product of two connected spaces is a connected space.	(04)

*******19***14****S

